М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
baryshnikova20
baryshnikova20
07.08.2021 18:12 •  Геометрия

Написать дано и записать доказательства равенства треугольника ​

👇
Открыть все ответы
Ответ:
kazantsevaira2
kazantsevaira2
07.08.2021

Объяснение:

Вообщем смысл в следующем.

Основная формула объёма цилиндра:

V=πr²*h;   πr² - площадь основания цилиндра, h - высота

V=πr²*h ,  V=π * OB² * OO₁

Треугольник AOB - равнобедренный, так OA=OB как радиусы основания.

OH - это расстояние от центра O до хорды АВ и является высотой-медианой равнобедренного треугольника, и делит сторону АВ пополам под прямым углом.

Дальше, зная высоту ОН=d и НВ (= 1/2 длины хорды АВ) :

(1)    по теореме  Пифагора (с²=a²+b²) можно найти  сторону ОВ как гипотенузу треугольника НОВ:

ОВ²=d²+HB²;  ОВ = √(d²+HB²)

(2)    Либо через sin угла α (который  ∠АОВ), не зря же нам его величину α дали.

sinα - это отношение противолежащего этому углу катета к гипотенузе

[не забываем, что это ∠АОВ = α, а ∠АОВ = α/2 или =1/2α

то есть sin(1/2α) = НВ/ОВ, отсюда чтобы найти радиус ОВ = НВ / (1/2α).

Высота цилиндра и радиус основания образуют другой прямоугольный треугольник O₁ВО, в котором ∠O - прямой (+90°), ∠В = φ

Зная расстояние от верхнего центра до конца хорды O₁В и радиус ОВ (=r), можно найти высоту O₁О, опять же либо по теореме Пифагора, либо через косинус данного угла ∠O₁ОО = φ.

cosφ - отношение прилежащего катета к гипотенузе, то есть

cosφ = O₁О / O₁В, отсюда высота O₁О = O₁В * cosφ

Таким образом, вычислив радиус ОВ основания цилиндра и высоту O₁О цилиндра, сможем найти его объём по формуле: V=πr²*h

4,4(53 оценок)
Ответ:
kuznechikmarin
kuznechikmarin
07.08.2021

меньший катет АС=6см, больший катет ВС=12√3 см

Объяснение:

обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:

\frac{ac}{ab} = \frac{ah}{ac}

теперь подставим наши значения в эту пропорцию:

\frac{ac}{24} = \frac{6}{ac}

перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:

АС ²=6×24=144

АС=√144=12см

Теперь найдём катет ВС по теореме Пифагора:

ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см


1)Проекція катетів прямокутного трикутника на гіпотенузу відповідно дорівнюють 18см і 6 знайдіть мен
4,5(22 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ