М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
енот252
енот252
22.09.2022 18:06 •  Геометрия

Привет :) это геометрия 7 класс


Привет :) это геометрия 7 класс

👇
Открыть все ответы
Ответ:
olgakunitskaya
olgakunitskaya
22.09.2022

Дан параллельный вектор e¯¯¯={1,−6,−4}.

Для уравнения плоскости нужен нормальный (то есть перпендикулярный) вектор.

Их произведение (скалярное) равно нулю.

Примем одну координату за 0 - по оси Oz.

Получим нормальный вектор (6; 1; 0)

В уравнение плоскости подставим координаты точки М0:

6*(x - 7) + 1*(y - 2) + 0*(z - 9) = 0.

6x - 42 + y - 2  = 0, получаем уравнение:

6x + y - 42 = 0.

Делаем проверку - подставляем координаты точки M1(7,3,10).

6*7 + 3 - 42 = 3. Не проходит плоскость через эту точку.

Тогда нормальный вектор находим как векторное произведение векторов М0М1 и e¯¯¯={1,−6,−4}.

Вектор М0М1 = M1(7,3,10) - M0(7,2,9) = (0; 1; 1)

i      j      k|     i     j

0    1      1|     0    1

1    -6   -4|    1      -6  = -4i + 1j + 0k -0j + 6i - 1k = 2i + 1j - 1k.

Получаем координаты нормального вектора (2; 1; -1) и точку M0(7,2,9).

Уравнение плоскости: 2(x - 7) + 1(y - 2) - 1(z - 9) = 0.

2x - 14 + y - 2 - z + 9 = 0.

2x  + y  - z - 7 = 0.

Проверяем М0: 2*7 + 1*2 - 1*9 - 7 = 14 + 2 - 9 - 7 = 0,

          M1(7,3,10): 2*7 + 1*3 -1*10 - 7 = 14 + 3 - 10 - 7 = 0.

Верно.

ответ: уравнение плоскости 2x  + y  - z - 7 = 0.                  

4,6(16 оценок)
Ответ:
настячччч
настячччч
22.09.2022
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота,
РА=РВ=РС=6 см

1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)

2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3  = √69 (см) - это длина стороны основы.

3. Находим периметр основы.
Р=3а
Р=3√69 см

4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)

5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)

ответ. 11,25 √23 см².
4,4(5 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ