М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
KeselMeme
KeselMeme
07.12.2020 13:15 •  Геометрия

Дано рівнобедрену трапецію з тупим кутом 120° діагональ, перпендикулярна до бічної сторони. Знайти бічну сторону, якщо більша основа трапеції дорівнює 26 см

👇
Открыть все ответы
Ответ:
emy2512
emy2512
07.12.2020

1. Радиус сферы равен половине диаметра, R = 25 см.

Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.

Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:

АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм

Линия пересечения сферы плоскостью - окружность. Ее длина:

C = 2π·AC = 2π · 20 = 40π см

2. Сечение шара - круг. Его площадь равна 36π см²:

Sсеч = π · r² = 36π

r² = 36

r = 6 см

Из прямоугольного треугольника АОС по теореме Пифагора:

ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.

3. Радиус большого круга равен радиусу шара.

Площадь сечения:

Sсеч = πr²

Площадь большого круга:

S = πR², R = √(S/π)

Sсеч / S = πr² / (πR²) = r²/ R²

По условию Sсеч / S = 3 / 4, ⇒

r²/ R² = 3 / 4, тогда r/R = √3/2

В прямоугольном треугольнике АОС r/R - это косинус угла А.

Тогда ∠А = 30°.

Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен

OC = R/2 = √(S/π) / 2 = √S/(2√π)

4. Радиус шара равен половине диаметра:

R = 2√3 см

Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому

ОС = r = R/√2 = 2√3 / √2 = √6 см

Sсеч = πr² = π · (√6)² = 6π см²

4,7(34 оценок)
Ответ:
OlesyLisaGames
OlesyLisaGames
07.12.2020

task/30246302  В треугольнике заданы вершина А(4,6), уравнения медианы x-5y+7=0 и высоты x+4y-2=0 выходящих из одной вершины. Найти координаты остальных вершин, составить уравнения сторон, а также найти длину высоты треугольника.

решение  Для определенности пусть медиана BM , а  высота BH .  Координаты этой вершины  B определяется в результате решения системы { x -5y +7=0 ; x + 4y-2= 0 . ⇔  {x-5y +7=0 ; 9y =9. ⇔{ x= -2 ; y= 1 .   B(- 2; 1).  

Уравнение стороны  AC будет имеет вид  y - 6 = k(x - 4) ;  угловой коэффициент  k определяется из  k* k₁= - 1 , где k₁ угловой коэффициент прямой  BH (т.к. AC⊥ BH ):  x+4y -2=0 ⇔ y = (-1/4)x +1/2.       ( k₁ = -1/4 ⇒ k = 4).    y - 6 = 4(x - 4)  

уравнение стороны AC : 4x - y - 10 = 0 .   * * *(1/√17)*(4x -y -10) =0 * * *  

 Для определения  координаты вершины С сначала определим координаты середины  стороны AC (точка M) , а для этого достаточно решить систему уравнений ( уравнении  прямых AC и  BM) :

{ x- 5y +7=0 ; 4x - y - 10 = 0.  ⇔ { x=3; y =2 .                     M(3 ; 2)

x(C) =2x(М)-x(A) =2*3-4 =2 ; y(C) =2y(М)-y(A) =2*2-6 =-2. C(2 ; -2)

* * * т.к.  x(М)= ( x(A) + x(C) ) / 2  ;   y(М)=( y(A) +y(C) ) / 2.  * * *

Уравнение прямой AB: y-6=[(1-6):(-2 -4)]*(x -4) ⇔ 5x - 6y +16 =0.

Уравнение прямой BC: y-1=[(-2-1):(2 -(-2)]*(x -(-2)) ⇔ 3x+4y +2 =0.

Длина высоты BH (расстояние от точки B(-2 ; 1) до прямой AC ).  Нормальное  уравнение   прямой  AC:  (4x - y - 10) /√17  = 0                          * * * (4x - y - 10) /√(4²+ (-1)²)  = 0 * * *

d = | 4*(-2) - 1 - 10 | / √17 = 0 . ⇔ d =  19 /√17= ( 19√17 ) / 17 .

4,4(47 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ