В прямоугольном треугольнике катет, лежащий против угла 30 градусов = 1/2 гипотенузы. Доказательство. Дано тр. АВС. Угол С- прямой Доказать: СВ = 1/2 АВ 1)Угол В = 180 - 90 - 30 = 60 гр.(по теореме о сумме углов треуг. 2) Проведём из вершины угла С медиану СF, которая равна по определению медиана, проведённая к гипотенузе равна половине гипотенузы, то треугольники CAF и CBF- равнобедренные. По доказанному CF=AF=BF Следовательно, у треуг. CFB углы при основании равны:∠B=∠BCF=60º.Так как сумма углов треугольника равна 180º, то в треугольнике BFC∠BFC =180º -(∠B+∠BCF)=60º.Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.Значит, все его стороны равны и
1) АВ = 16 + 4 = 20 2) Соединим точки А и В с центром окружности. (с точкой О) 3) Получили равнобедренный треугольник АОВ АО = ОВ ( т.к. это радиусы) 4) Из вершины О треугольника проведём высоту к основанию АВ. 5) Высота в равнобедренном треугольнике является и медианой, и биссектрисой. Обозначим точку пересечения высоты с основанием точкой К. АК = КВ = (4 + 16) : 2 = 10 6) Рассмотрим прямоугольный треугольник РОК: РО = 15 (по условию) РК = 10 - 4 = 6 Найдём по теореме Пифагора ОК. ОК = Y(15^2 - 6^2) = 13,75
гипотенузы.
Доказательство.
Дано тр. АВС. Угол С- прямой
Доказать: СВ = 1/2 АВ
1)Угол В = 180 - 90 - 30 = 60 гр.(по теореме о сумме углов треуг.
2) Проведём из вершины угла С медиану СF, которая равна по определению медиана, проведённая к гипотенузе равна половине гипотенузы, то треугольники CAF и CBF- равнобедренные. По доказанному CF=AF=BF
Следовательно, у треуг. CFB углы при основании равны:∠B=∠BCF=60º.Так как сумма углов треугольника равна 180º, то в треугольнике BFC∠BFC =180º -(∠B+∠BCF)=60º.Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.Значит, все его стороны равны и