Движение – отображение плоскости на себя, при котором расстояния между точками плоскости сохраняются.
Докажем, что поворот является движением, то есть, при повороте сохраняются расстояния между точками.
Возьмём две произвольные точки на плоскости: А и В. Выберем точку О – центр поворота и угол поворота α. При этом повороте точка А переходит в точку А1, точка В в точку В1.
По определению поворота: ОА = ОА1; ОВ = ОВ1; ∠АОА1 = α; ∠ ВОВ1 = α
Рассмотрим ∆АОВ и ∆А1ОВ1.
∠АОВ = α – ∠ВОА1; ∠А1ОВ1 = α – ∠ВОА1 ⇒ ∠АОВ = ∠А1ОВ1
и ОА = ОА1; ОВ = ОВ1.
Следовательно, треугольники равны по двум сторонам и углу между ними.
Раз треугольники равны, то равны соответственные стороны,
тогда АВ = А1В1.
Это и говорит о том, что расстояние между двумя точками при повороте осталось без изменения. Точки А и В выбраны произвольным образом, поэтому можно сделать вывод, что сохранятся расстояния между любыми двумя точками.
Из точки Е на ВС надо провести перпендикуляр. Пусть он пересекается с ВС в точке К. Тогда ВКЕ - равнобедренный прямоугольный треугольник, и его катеты ВК = ЕК = 3.
В прямоугольном треугольнике ЕКС катет ЕК = 3, гипотенуза ЕС = 5, то есть это "египетский" треугольник, его второй катет равен КС = 4.
Отсюда сторона квадрата ВС = 3 + 4 = 7, а площадь квадрата 7^2 = 49;
На самом деле, есть еще интересная возможность - если ЕD > BD. То есть точка E лежит на продолжении BD за точку B. В этом случае суть решения не меняется, но сторона квадрата ВС = 1, и площадь тоже 1.