1)Периметр ромба равен 4*сторона
сторона= 52\4=13 см
Площадь ромба равна произведению квадрата стороны на синус угла между сторонами
отсюда синус угла =площадь робма разделить на квадрат стороны
sin A=120\(13^2)=120\169
Так как угол А -острый,то cos A=корень(1-sin^2 A)=корень(1-(120\169)^2)=
=119\169
По одной из основных формул тригонометрии
tg A=sin A\cos A=120\169\(119\169)=120\119
ответ:120\169,119\169,120\119.
2)
Катеты треугольника относятся друг к другу как 9 к 40.
Пусть длина одного катета 9х, тогда второго 40х.
По теореме пифагора квадрат катетов равен квадрату гипотенузы
(9х) в квадрате + (40х) в квадрате = 82 в квадрате
81 х^2 + 1600 х^2 = 6724. Отсюда х^2 = 4.
х=2.
один катет 9х=18 см
второй катет 40х=80 см
3)
Боковые стороны: (36-10)/2=13
Высота h=корень(169-25)=12
tga=5/12 sina=5/13 cosa=12/13.
4) cos - отношение прилежащего( в данном случае неизвестного) катета к гипотенузе, пусть гипотенуза - х, тогда катет 24х / 25. по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов x^2=14^2+(24x / 25)^2, отсюда х=50, а второй катет равен 48
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².
AC - биссектриса ⇒ ∠CAD = ∠CAB
∠CAD = ∠BCA - накрест лежащие углы при BC║AD ⇒
∠BAC = ∠BCA ⇒ ΔABC - равнобедренный ⇒ AB = BC = 15 см
Высоты BT⊥AD; CK⊥AD; TK = BC = 15 см ⇒
AT = KD = (AD - TK)/2 = (33 - 15)/2 = 9 см
ΔABT : ∠ATB = 90°; AB = 15 см; AT = 9 см
Теорема Пифагора
BT² = AB² - AT² = 15² - 9² = 144 ⇒ BT = √144 = 12 см
Площадь трапеции
S = 1/2 (BC + AD)*BT = 1/2 (15 + 33)*12 = 288 см²
Площадь трапеции 288 см²