. На биссектрисе угла АВС взята точка М так, что <ВМА= <ВМС. Докажите, что АМ=МС. . Отрезки МК и РЕ пересекаются в середине отрезка РЕ, <МРО=<КЕО. Докажите, что треугольник МОР равен треугольнику КЕО.
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.
б) Найдите угол между этой плоскостью и плоскостью основания АВС. Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ. Точки пресечения - это Д и Е. Примем длину отрезка АК за 1. Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3. Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1. Угол ЕАД равен 60 градусов (по заданию). По теореме косинусов
Находим гипотенузы в треугольниках АКД и АКЕ.
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов). Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти. Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД. Находим высоты в треугольниках АЕД и КЕД по формуле:
АЕ ДЕ АД p 2p S = 1 0.8694729 0.5773503 1.2234116 2.446823135 0.25 haе hде hад 0.5 0.57506 0.86603
КЕ ДЕ КД p 2p S = 1.4142136 0.869473 1.154701 1.719194 3.43839 0.501492 hке hде hкд 0.7092 1.15356 0.86861. Отношение высот hде и hде - это косинус искомого угла: cos α = 0.57506 / 1.15356 = 0.498510913. ответ: α = 1.048916149 радиан = 60.09846842°.
Нехай АВСD - ромб, АС=16, АВ=ВС=СD=AD=10
О - точка перетину діагоналей
Діагоналі ромба (як паралелограма) перетинаються і в точці перетину діляться пополам, тому АО=16:2=8 см
Діагоналі ромба перетинаються під прямим кутом. Тому трикутник АОВ прямокутний з прямим кутом О
За теоремою Піфагора
Значить друга діагональ дорівнює BD=2BO=2*6=12 см
Площа ромба дорівнює половині добутку діагоналей. Площа ромба (як паралелограма) дорівнює добутку сторони на висоту проведену до цієї сторони.
звідки висота ромба дорівнює
см
відповідь: 9.6 см
Объяснение: