Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
P1K - высота треугольника РР1N1
P1K = 8*корень(2)
P1Q = корень(8^2+15^2)=17
tg(KQP1) = P1K /P1Q = 8*корень(2)/17
угол KQP1= arctg( 8*корень(2)/17) ~ 33,64425 градус
2)
АК=3*корень(3^2+2^2)=3*корень(13)
АC=3*корень(2)
CК=3*корень(3^2+2^2)=3*корень(13)
CO - высота треугольника АСК
СО*АК=АС*корень(АК*АК-АС*АС/4)
СО=АС*корень(АК*АК-АС*АС/4)/АК=АС*корень(1-(АС/(2АК))^2)=
СО=3*корень(2)*корень(1-(3*корень(2)/(2*3*корень(13)))^2)=15/КОРЕНЬ(13)
tg(alpha)=C1C/СО=5*КОРЕНЬ(13)/15= КОРЕНЬ(13)/3
угол alpha=arctg(КОРЕНЬ(13)/3) ~ 50,23784 градус
3)
C1G=5*корень(2^2+1^2)=5*корень(5)
А1C1=5*корень(2)
A1G=5*корень(5)
A1O - высота треугольника А1С1G
A1О*C1G=А1С1*корень(C1G^2 –А1С1^2 /4)
A1О= А1С1*корень(C1G^2 –А1С1^2 /4)/ C1G= А1С1*корень(1 –(А1С1/2 C1G) ^2) = =5*корень(2)*корень(1 –(5*корень(2)/(2*5*корень(5))) ^2)=3*корень(5)
tg(alpha)=A1A/A1О=9/(3*КОРЕНЬ(5)) = 3/КОРЕНЬ(5)
угол alpha=arctg(3/КОРЕНЬ(5)) ~ 53,30077 градус