Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°
сделаем построение по условию
объем пирамиды V=1/3*So*H
по условию
<SKO =60 грани наклонены к основанию под углом 60гр.
LO=2√3 - высота в треугольнике SKO
треугольник SKO -прямоугольный | SO | ┴ (ABC)
<KSO = 90 - <SKO =90 -60=30 град
треугольник SLO -прямоугольный | OL | ┴ | SK |
OK = LO/sin<SKO = 2√3 / sin60 = 4
высота Н=SO=LO / sin<KSO = 2√3 / sin30 = 2√3 / 1/2 =4√3
основание - равносторонний треугольник АВС
все стороны равны, все углы равны 60 град
точка О - центр треугольника , пересечение медиан АА1,ВВ1,СК
известно, что точка О делит медиану в отношении ОК : ОС = 1 : 2
тогда ОК = 1/3 *СК , значит CK = 3*OK = 3*4=12
стороны треугольника АВС АВ=ВС=АС=СК /sin60=12/sin60=8√3
тогда площадь основания
So=1/2*AB*CK=1/2*8√3*12= 48√3
объем пирамиды V=1/3 *48√3 *4√3 = 192
ответ: 192