На рисунке обозначены:
ABC - Основание пирамиды
OS - Высота
KS - Апофема
OK - радиус окружности, вписанной в основание
AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан
ответ:Если < 5=50 градусов,то 50 градусов равны и углы:<2,<3,<8, т к <5 и <8,а также < 2 и <3,являются накрест лежащие и равны между собой,а ещё о них можно сказать,что они вертикальные и равны между собой
Углы 2 и 7,а также 6 и 3, являются односторонними,их сумма равна 180 градусов
Угол 2 равен 50,тогда угол 7 равен
180-50=130 градусов
Угол 3 равен 50,тогда угол 6 равен
180-50=130 градусов
Углы 1 и 2 смежные,их сумма равна 180 градусов,угол 2 равен 50 градусов,тогда угол 1 равен
180-50=130 градусов
Угол 4 и 7 вертикальные,угол 7 равен 130 градусов,следовательно и угол 4 тоже равен 130 градусов
Объяснение: