М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Вика310387
Вика310387
01.09.2020 14:28 •  Геометрия

Сравните рельеф северной и южной частей Луганщины​

👇
Открыть все ответы
Ответ:
vaceslavsmelev
vaceslavsmelev
01.09.2020
Для решения этой задачи мы должны использовать знание о свойствах выпуклых многоугольников.

1. Первое, что мы можем заметить, это то, что сумма всех внутренних углов выпуклого многоугольника равна 180 градусов * (n - 2), где n - количество сторон многоугольника. Например, для треугольника (n = 3) сумма углов будет равна 180 градусов, для четырехугольника (n = 4) - 360 градусов и так далее.

2. Когда мы говорим о сумме внешних углов многоугольника, это означает, что мы рассматриваем углы вокруг каждой вершины многоугольника. Внешний угол многоугольника образуется суммой двух внутренних углов, взятых при этой вершине. Например, если у нас есть треугольник, то сумма внешних углов будет равна 180 градусов (ведь каждая вершина треугольника имеет один внешний угол), для четырехугольника - 360 градусов и т.д.

Теперь, когда у нас есть эти знания, мы можем решить задачу.

Дано:
Сумма внутренних углов равна сумме внешних углов, взятых по два при каждой вершине.

Мы можем представить это уравнение следующим образом:

180 градусов * (n - 2) = 360 градусов * n

Теперь давайте разберем это уравнение по шагам:

1. Раскроем скобки:
180 градусов * n - 360 градусов = 360 градусов * n

2. Перенесем все n на одну сторону уравнения, а числа на другую:
180 градусов * n - 360 градусов * n = 360 градусов

3. Объединим подобные члены:
-180 градусов * n = 360 градусов

4. Разделим обе стороны уравнения на -180 градусов:
n = -360 градусов / -180 градусов

5. Упростим выражение:
n = 2

Таким образом, получается, что выпуклый многоугольник имеет 2 стороны.

Давайте проверим это решение:

- Сумма внутренних углов для двугранныка (n = 2) равна 180 градусов * (2 - 2) = 0 градусов.
- Сумма внешних углов, взятых по два при каждой вершине, также равна 0 градусов, потому что у нас есть только две вершины.

Таким образом, условие задачи выполняется, и ответ n = 2 верен.

В результате, у выпуклого многоугольника будет 2 стороны.
4,8(40 оценок)
Ответ:
эги1
эги1
01.09.2020
Хорошо, давай решим эту задачу пошагово.

Шаг 1: Изучение рисунка и обозначения
Для начала, давай посмотри на рисунок и разберемся с обозначениями. У нас есть прямоугольник ABCD, где AB - основание, а BC - высота. Диагональ BD разделяет прямоугольник на два треугольника - BCD и ABD.

Шаг 2: Расчет площадей треугольников
Нам нужно найти меньший угол между биссектрисами острых углов треугольника BCD. Но перед этим давай найдем площадь треугольников BCD и ABD, чтобы использовать их для нахождения нужного угла.

Площадь треугольника вычисляется по формуле S = (1/2) * основание * высота.

В треугольнике BCD, основание - это сторона BC, a высота - это расстояние от вершины B до прямой CD (она же является биссектрисой острого угла D). Обозначим это расстояние как h.

H(высота треугольника BCD) = h
BC(основание треугольника BCD) = BC

Зная аналогичные формулы для треугольника ABD, мы можем вычислить площадь обоих треугольников.

S(треугольник BCD) = (1/2) * BC * h
S(треугольник ABD) = (1/2) * AB * h

Шаг 3: Находим нужное расстояние
Теперь нам нужно найти расстояние h, чтобы использовать его для расчета площадей треугольников. Мы знаем, что биссектриса острого угла разделяет прямоугольник на два равных треугольника. Таким образом, треугольник BCD можно считать прямоугольным, и мы можем использовать теорему Пифагора, чтобы найти h.

Т.к. треугольник BCD является прямоугольным, то применим теорему Пифагора:
h^2 = BD^2 - BC^2

Шаг 4: Находим BD и BC
Теперь нам нужно узнать значения высоты BC и диагонали BD.
Мы знаем, что AD и BC являются диагоналями прямоугольника ABCD. Рассмотрим треугольник ABD. Он является прямоугольным, и мы можем использовать теорему Пифагора для его решения.

Аналогично предыдущему шагу, получим:
AD^2 = AB^2 + BD^2

Вспоминая построение евклидова квадрата, где: AB = BC и AD = CD, можем сформулировать такую систему уравнений:
1) AB = BC
2) AD = CD

Воспользуемся этими уравнениями, чтобы упростить наши расчеты.

Шаг 5: Избавляемся от длин сторон треугольника
Подставим значения AB и AD из системы уравнений в уравнение для нахождения BD.

AB = BC (из уравнения 1)
AD = CD (из уравнения 2)

Получим:
AD^2 = AB^2 + BD^2
CD^2 = BC^2 + BD^2

AD^2 - AB^2 = CD^2 - BC^2
(AD + AB)(AD - AB) = (CD + BC)(CD - BC)

Заменяем AD + AB на DC и CD + BC на AD по системе уравнений:
DC * (AD - AB) = AD * (CD - BC)

Раскрываем скобки:
AD * DC - AB * DC = AD * CD - AD * BC

Так как AB = BC и AD = CD, упростим выражение:
AD * DC - BC * DC = AD * CD - AD * BC

Объединим члены с одинаковыми переменными:
DC(AD - BC) = AD(CD - BC)

Сократим обе части равенства на (AD - BC):
DC = AD

Таким образом, BD и DC равны по длине.

Шаг 6: Находим длину h
Теперь, зная, что BD и DC равны по длине, мы можем использовать это для нахождения h.
Используем теорему Пифагора для треугольника BCD:
h^2 = BD^2 - BC^2
h^2 = DC^2 - BC^2
h^2 = 0

Так как h^2 равно нулю, это означает, что высота треугольника BCD равна нулю. Это значит, что треугольник BCD - вырожденный треугольник, у которого две стороны лежат на одной прямой. В таком случае, угол между биссектрисами будет равен 180 градусов.

Ответ: Меньший угол между биссектрисами острых углов треугольника BCD равен 180 градусов.
4,5(21 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ