∪PQ - дуга окружности c центром B (большей) ∪PQ' - дуга окружности c центром A
△APB=△AQB (по трем сторонам) ∠ABP=∠ABQ, ∠PAB=∠QAB
Угол между касательной и хордой, проведенной в точку касания, равен половине дуги, стягиваемой хордой. ∠LQP=∪PQ/2 Центральный угол равен дуге, на которую опирается. ∠PBQ=∪PQ ∠ABQ=∠PBQ/2 =∪PQ/2 =∠LQP
∠PAQ=∪PQ' ∠QAB=∠PAQ/2=∪PQ'/2 Вписанный угол равен половине дуги, на которую опирается. ∠PLQ=∪PQ'/2=∠QAB
Пусть есть два треугольника ABC и A'B'C', углы A и A' равны, AB=A'B'; AC=A'C'. Докажем, что эти треугольники равны.
Будем накладывать эти треугольники. Сначала совместим точки A и A' и разместим треугольники так, чтобы лучи AB и A'B', а также лучи AC и A'C' оказали сонаправленными (это можно сделать, т.к. углы при вершине А равны) Т.к. AB=A'B'; AC=A'C, то точки B и B', а также точки C и С' попарно совпадут. Но тогда совпадут и отрезки BC и B'C' - иначе через 2 точки проходило бы 2 прямые, что невозможно. Признак доказан.
Они равны потому что CD биссектриса, а она делит углы два на ровных!