Теоре́ма Пифаго́ра — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы.Соотношение в том или ином виде предположительно было известно различным древним цивилизациям задолго до нашей эры; первое геометрическое доказательство приписывается Пифагору. Утверждение появляется как Предложение 47 в «Началах» Евклида[⇨].
Также может быть выражена как геометрический факт о том, что площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Верно и обратное утверждение[⇨]: треугольник, сумма квадратов длин двух сторон которого равна квадрату длины третьей стороны, является прямоугольным.
Существует ряд обобщений данной теоремы[⇨] — для произвольных треугольников, для фигур в пространствах высших размерностей. В неевклидовых геометриях теорема не выполняется[⇨].
Х-1 часть;так как у нас имеется соотношение чисел,то исспользуем х-ы.Запишем формулу периметра треугольника : 3х+4х+6х=130;130=13х;х=10; Подставляем значение х и получаем треугольник со сторонами 30см,40см и 60см. Далее из условия узнаем ,сто нам необходимо найти длину сторон теугольника,вершинами которого являются середины сторон данного треугольника,то есть по сути стороны искомого треугольника будут средними линиями для треугольника с периметром 130см.Следовательно стороны искомого треугольника будут в два раза меньше данного ,а это соответствует числам:15см,20см ,30см
Обозначим A и B - катеты С - гипотенуза Н - высота к гипотенузе Уравнения: 1. A^2 = H^2 + 9^2 2. B^2 = H^2 + 16^2 3. A^2 + B^2 = (9^2 + 16^2) Подставляем значения квадратов катетов в 3-е уравнение H^2 + 9^2 + H^2 + 16^2 = (9^2 + 16^2) 2H^2 + 337 = 625 2H^2 = 288 H^2 = 144 H = 12 м А = 15 м В = 20 м Полупериметр р = (А + В + С) / 2 = (15 + 20 + 25) = 30 м Площадь треугольника S = А * В / 2 = 15 * 20 / 2 = 150 м Радиус вписанного круга r = S / p = 150 / 30 = 5 м Площадь вписанного круга s = ПИ*r^2 = 25ПИ
Теоре́ма Пифаго́ра — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы.Соотношение в том или ином виде предположительно было известно различным древним цивилизациям задолго до нашей эры; первое геометрическое доказательство приписывается Пифагору. Утверждение появляется как Предложение 47 в «Началах» Евклида[⇨].
Также может быть выражена как геометрический факт о том, что площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Верно и обратное утверждение[⇨]: треугольник, сумма квадратов длин двух сторон которого равна квадрату длины третьей стороны, является прямоугольным.
Существует ряд обобщений данной теоремы[⇨] — для произвольных треугольников, для фигур в пространствах высших размерностей. В неевклидовых геометриях теорема не выполняется[⇨].