
В условии явно не отобразилось √2 при значении диагонали. .
Правильное условие задачи:
Найдите косинус угла между плоскостями квадрата ABCD и равностороннего треугольника ABM, если диагональ квадрата равна 4√2 см и расстояние от точки M до стороны DC равно 5 см.
Решение. (см. рисунок 1)
Диагональ квадрата делит его на два равных прямоугольных треугольника с острым углом 45°. Поэтому сторона квадрата равна АВ=4√2•sin 45°=4 (cм).
Искомый угол - угол между высотой МН правильного треугольника АМН и отрезком КН, проведенными перпендикулярно к середине АВ.
МН= АВ•sin60°=4•√3/2=2√3
Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой.
По т. о трёх перпендикулярах МК ⊥ - ⇒ это расстояние от М до CD, равное 5 см. По т.косинусов
cos∠MHK=(KM²-KN²+MH²):(-2•KH•MH)
cos∠MHK=(25- 16-12):(-2•4•2√3)=√3/16
* * *
Решение по данному в вопросе условию:
Если диагональ квадрата равна 4 см, то, т.к. она делит квадрат на два равных прямоугольных равнобедренный с острым углом 45°, его сторона равна 4•sin45°=2√2.
Искомый угол - угол между перпендикулярами, проведенными в каждой плоскости к одной точке на стороне АВ. (на линии их пересечения), т.е. это угол между высотой МК треугольника АМВ и отрезком КН, проведенным через середины сторон АВ и СD квадрата, т.к. МК⊥АВ, и НК⊥АВ.
АВ - общая для квадрата и равностороннего треугольника, и
МК=АВsin 60°=2√2•√3/2=√6
Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой.
Т.к. КН ⊥СD, то по т. о трех перпендикулярах МК⊥CD, ⇒ МК=5.
По т.косинусов из ∆ МКН
cos ∠MKH=(MH²-MK²-KH²)² (- 2MK•KH)
cos ∠MKH=(25-8-6): (-2•2√12)
cos ∠MKH= -11/8√3= - 0,7939 Это косинус тупого угла.
По данному решению рисунок в приложении 2.
Жил-был на свете треугольник. Он был молод и очень одинок. Он мало знал о том мире, где жил. И решил треугольник отправиться в путешествие, чтобы найти друзей и узнать побольше об окружающем мире.
Шел он, шел, долго ли, коротко ли, и вдруг увидел детей, играющих в мячик. Пригляделся - да это же треугольники! Подбежал к ним и заговорил:
- Привет, братья-треугольники!
- Привет, треугольник. Что ж ты такой радостный?
- А как же? Собратьев встретил! Смотрите, ведь мы с вами одинаковые!
- Экий ты глупый, треугольник! Какие же мы одинаковые? Неужели ты не знаешь первого правила равенства треугольников? - спросил у него второй треугольничек.
- Какое еще первое правило равенства? - удивленно спросил молодой треугольник.
- Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то они равны. Посмотри, у нас с треугольничком и стороны меньше твоих, и углы. Мы совсем неодинаковые.
Расстроился треугольник, пошел дальше. Идет он, идет, и видит: сидит на скамейке еще один треугольник, старый-престарый. Подошел треугольник к старику и говорит:
- Привет, дедушка. Неужели и ты от меня чем-то отличаешься?
- Ну, конечно, милок! Ты посмотри: я треугольник равнобедренный, а ты - нет.
- Что ты такое говоришь, дедушка? Равнобедренный, нет, что за глупости?
- Экий ты неразумный еще! Смотри, у тебя каждая сторона немножко больше другой, а у меня - все равны. Мы с тобой неодинаковые.
Снова расстроился треугольник. Пустился в путь снова. Шел он долго ли, коротко ли. Устал, присел на камешек отдохнуть. Видит, идет мимо него треугольник с котомкой. Обернулся на наш треугольник, подошел к нему, сел рядом и молчит. Треугольник спрашивает у незнакомца:
- Куда путь держишь, брат-треугольник?
- Никуда. Путешествую, пытаюсь мир познать, друзей найти. И все какие-то разные.
- Я тоже. Измеримся что ли, для интереса? Вдруг, мы одинаковые?
И решили они попробовать, все равно делать нечего. Нашел где-то треугольник линейку и измерил все стороны и углы между ними. И оказалось так, что все стороны и углы равны у этих двух треугольников. И обрадовались они безмерно. И решили они путешествовать вместе по разным уголкам мира, но не ссориться, ведь они равны. И жили они потом долго и счастливо.