Проекции катетов на гипотенузу - это отрезки, на которые делит гипотенузу высота, опущенная на нее из прямого угла. Известно, что квадрат этой высоты равен произведению величин отрезков гипотенузы, то есть h = √(1*3) = √3. Тогда в прямоугольных треугольниках, на которые делится исходный прямоугольный треугольник высотой из прямого угла на гипотенузу, имеем: тангенсы острых углов исходного треугольника равны отношению противолежащего катета к прилежащему, то есть √3/1 и √3/3. Значит эти углы соответственно равны 60° и 30°.
Апофема правильной четырехугольной пирамиды равна 12, радиус окружности, описанной около основания, равен 6. Найдите косинус двугранного угла при основании пирамиды. ------------------------- Основание правильной четырехугольной пирамиды - квадрат. Радиус описанной вокруг квадрата окружности равен половине диагонали квадрата. Пусть основание - АВСД. Центр описанной окружности квадрата находится в точке пересечения его диагоналей и является основанием КО - высоты пирамиды. Радиус описанной окружности АО=ОВ, апофема - КН. Из прямоугольного треугольника АОВ сторона АВ по т. Пифагора равна 6√2. Косинус двугранного угла при основании пирамиды найдем из прямоугольного треугольника КНО cоs∠КНО=ОН:КН. ОН - высота и медиана равнобедренного прямоугольного ⊿ АОВ и равна АН ОН=АВ:2=6√2:2=3√2 cоs∠КНО=(3√2):12= (√2):4 или иначе 1:(2√2)
sina=BC/AB
cosa=AC/AB
sin^2x+cos^2x=1
cos^2x=1-sin^2x
cos^2x=64/289
cosx=8/17
8/17=8/AB
AB=8*17/8=17
По теореме Пифагора:
AB^2=AC^2+CB^2
-CB^2=AC^2-AB^2
CB^2=AB^2-AC^2
CB^2=289-64=225
CB=15
ответ: 15.