Площадь поверхности усечённого конуса вычисляется по формуле:
S = п * (r1 + r2) * l + п * r12 + п * r22.
Здесь r1 и r2 — радиусы оснований, l — образующая.
Для начала, вычислим радиусы оснований:
4 * п = 2 * п * r1;
r1 = 2;
10 * п = 2 * п * r2;
r2 = 5.
Теперь опустим высоту из крайней точки меньшего основания на большее. Мы получим прямоугольный треугольник, один из катетов которого равен высоте, а другой — разности радиусов. Найдём его:
5 - 2 = 3.
По теореме Пифагора можно найти образующую:
l = sqrt (9 + 16) = 5.
Тогда площадь полной поверхности усечённого конуса будет равна:
S = п * (2 + 5) * 5 + п * 4 + п * 25 = 64 * п.
ответ: площадь полной поверхности усечённого конуса равна 64 * п
Обозначим меньшую сторону прямоугольника через x, тогда большая сторона 1,5x. По условию площадь прямоугольника равна 24 см², значит x * 1,5x = 24 1,5x² = 24 x² = 16 x = 4 см - меньшая сторона прямоугольника 1,5 * 4 = 6 см - большая сторона прямоугольника Площадь квадрата равна 24 cм² . Если сторону квадрата обозначим через a, то a² = 24 a = √24 = 2√6 см Чертёж здесь не нужен и вообще непонятно, для чего было написано про стороны прямоугольника. Сторону квадрата и без этого можно было найти. Может в задаче был ещё один вопрос, чему равны стороны прямоугольника, на всякий случай я вычислила.
Площадь поверхности усечённого конуса вычисляется по формуле:
S = п * (r1 + r2) * l + п * r12 + п * r22.
Здесь r1 и r2 — радиусы оснований, l — образующая.
Для начала, вычислим радиусы оснований:
4 * п = 2 * п * r1;
r1 = 2;
10 * п = 2 * п * r2;
r2 = 5.
Теперь опустим высоту из крайней точки меньшего основания на большее. Мы получим прямоугольный треугольник, один из катетов которого равен высоте, а другой — разности радиусов. Найдём его:
5 - 2 = 3.
По теореме Пифагора можно найти образующую:
l = sqrt (9 + 16) = 5.
Тогда площадь полной поверхности усечённого конуса будет равна:
S = п * (2 + 5) * 5 + п * 4 + п * 25 = 64 * п.
ответ: площадь полной поверхности усечённого конуса равна 64 * п