Серега поспешил немного :)) а торопиться не надо :)) мы должны вернуть обществу полноценного гражданина :))
Да, если опустить высоту на основание, то треугольник делится на 2 равных прямоугольных, причем у каждого гипотенуза 15, и катет 9. Это треугольники, подобные египетскому (3,4,5), то есть второй катет 12, это и есть высота. Можно, конечно, и теорему Пифагора применить напрямую, но так веселее.
Периметр треугольника 48, площадь 12*15/2 = 90, отсюда радиус вписанной окружности r = 2S/P
r = 2*90/48 = 45/12;
Радиус описанной окружности конечно считается по формуле R = abc/4S, которая выводится из обычной формулы для площади и теоремы синусов.
По условию Δ равнобедренный. две его стороны обозначим а, угол между ними =180°-30° *2=120° SΔ=(1/2)*a*a*sin 120°, SΔ=(1/2)*a² *(√3/2) 64√3=(1/4)a²√3, a²=256, a=16 основание Δ обозначим с. рассмотрим прямоугольный Δ, образованный высотой треугольника, боковой стороной и половиной основания. cos 30°=(c/2)/a √3/2=(c/2)/16, √3/2=c/32, c=16√3 ответ: стороны треугольника 16 см, 16см, 16√3 см
рассмотрим прямоугольный Δ, образованный высотой треугольника h, боковой стороной а и половиной основания с/2. пусть h=х см, тогда а=2х см(катет против угла 30 в 2 раза меньше гипотенузы) по т. Пифагора: (2х)²=(с/2)²+х². 4х²=с²/4+х², с²/4=3х². с²=12х², с=2х√3 SΔ=(1/2)*c*h 64√3=(1/2)*2x√3*x 64√3=x² √3, x²=64, x=8, => h=8 см, а=2*8=16 см, с=2*8*√3=16√3 см ответ: 16,16 и 16√3
Серега поспешил немного :)) а торопиться не надо :)) мы должны вернуть обществу полноценного гражданина :))
Да, если опустить высоту на основание, то треугольник делится на 2 равных прямоугольных, причем у каждого гипотенуза 15, и катет 9. Это треугольники, подобные египетскому (3,4,5), то есть второй катет 12, это и есть высота. Можно, конечно, и теорему Пифагора применить напрямую, но так веселее.
Периметр треугольника 48, площадь 12*15/2 = 90, отсюда радиус вписанной окружности r = 2S/P
r = 2*90/48 = 45/12;
Радиус описанной окружности конечно считается по формуле R = abc/4S, которая выводится из обычной формулы для площади и теоремы синусов.
R = 18*15*15/(4*90) = 45/4;