Объяснение:
170 см²
S=ah (где h-высота; a-сторона, к которой проведена высота).
У нас есть прямая AP, которая со стороной MT образует угол PAM, который равен 90°, а следовательно АР является высотой этого параллелограмма.
Численно нам известна сторона МТ(МТ=7+10=17см), к которой проведена высота АР, но не известна сама высота. Рассмотрим треугольник АРТ, мы знаем, что угол А равен 90°, угол Р равен 45°, значит угол Т=180-90-45=45°; т.к. углы при основании равны, то треугольник является равнобедренным и его боковые стороны равны, а значит АТ=АР=10 см.
Теперь по формуле узнаем площадь: S=17*10=170 см²
Найдем ВС. По свойству медианы, проведенной к гипотенузе, ВС=2АМ=15*2=30 см.
ВМ=СМ=30:2=15 см.
Из прямоугольного треугольника АМН найдем МН.
МН=√(АМ²-МН²)=√(225-144)=√81=9 см.
НС=МС-МН=15-9=6 см.
Из треугольника АНС найдем АС:
АС=√(АН²+СН²)=√(144+36)=√180=6√5 см.
Найдем АВ:
АВ²=ВС²-АС²=900-180=720; АВ=√720=12√5 см.
sin A=sin 90°=1
sin B=AC\BC=6√5\30=√5\5
sin C=AB\BC=12√5\30=2√5\5
ответы: 30 см; 6√5 см; 12√5 см; 1; √5\5; 2√5\5.