М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
VladGulevevatiy
VladGulevevatiy
17.11.2022 14:42 •  Геометрия

Завтра зачет! в правильную усеченную четырехугольную пирамиду, стороны основания которой равны 3 и 27, вписана сфера. найдите площадь боковой поверхности пирамиды.

👇
Ответ:
mi1980
mi1980
17.11.2022

В перпендикулярном к плоскостям обеих иснований сечении, проходящем через центр вписанной сферы, найдем боковые стороны (это равнобедренная трапеция, в которую вписана окружность, значит, суммы противоположных сторон равны): 3 + 27 = 30. 30/2 = 15.

Это есть высота трапеции - боковой грани нашей усеченной пирамиды. Ее площадь можем найти: (3 + 27)*15/2 = 225.

В боковой поверхности нашей пирамиды таких поверхностей четыре, т.е. площадь боковой поверхности будет равна 225*4 = 900.

 

ответ: 900

4,4(28 оценок)
Открыть все ответы
Ответ:
1
Это ответ :)
На самом деле тут нужна теория. 
1). Фигура AB1D1A1 - правильная треугольная пирамида с основанием AB1D1. Вершина A1 проектируется на основание в центр O правильного треугольника AB1D1.
С другой стороны, фигура AB1D1C - тоже правильная пирамида с основанием AB1D1 (на самом деле это вообще правильный тетраэдр, у которого все грани и ребра одинаковые). Поэтому вершина C проектируется на основание в центр O правильного треугольника AB1D1.
Это означает, что точки A1 и C лежат на прямой, перпендикулярной плоскости AB1D1, и проходящей через точку O. 
Другими словами, ДОКАЗАНО, что плоскость AB1D1 перпендикулярна большой диагонали куба A1C.
Совершенно так же доказывается, что A1C перпендикулярна плоскости BDC1.
Само собой, плоскости AB1D1 и BDC1 параллельны.
2) Теперь надо обозначить O1 - центр треугольника BDC1 (через эту точку проходит диагональ A1C). M - середина BD и AC, M1 - середина B1D1 и A1C1.
Тогда из параллельности плоскостей AB1D1 и BDC1 
AO/OO1 = A1M1/M1C1 = 1; 
CO1/OO1 = CM/MA = 1; 
То есть все три отрезка A1O = OO1 = CO1.
Ясно, что OO1 - искомое расстояние между плоскостями (я напоминаю - A1C перпендикулярна обеим плоскостям).
Вот, теория закончилась. Дальше решение :)
A1C = 3, => OO1 = 1;
4,4(42 оценок)
Ответ:
Hictoru
Hictoru
17.11.2022
1) Проведем высоты из вершин верхнего основания на нижнее.( см. рисунок)
     Из прямоугольного треугольника с углом в 30⁰ высота трапеции - катет, лежащий против угла в 30⁰, и потому высота равна половине гипотенузы или √3
Второй катет, находим по теореме Пифагора
(2√3)²-(√3)²=12-3=9
Катет равен 3,отмечен на рисунке(?) Два таких катета на нижнем основании
 равны, значит верхнее основание 16-2·?=16-6=10
  ответ. верхнее основание равно 10 см.
2) см. рисунок. Параллелепипед в незавершенном виде, но хорошо видны плоскости основания, и двух боковых граней и три диагонали, сходящиеся в одной вершине.
Обозначим линейные размеры параллелепипеда  a, b, c
По теореме Пифагора:
a²+b²=7²
b²+c²=5²
a²+c²=6²
 Сложим три уравнения:
2a²+2b²+2c²=49+25+36, тогда
а²+b²+c²=55
заменим a²+b²=49, тогда 49+с²=55    ⇒    с²=6, с=√6
заменим b²+c²=25,  тогда а²+25=55   ⇒  а²=30, а=√30
заменим а²+с²=36, тогда b²+36=55    ⇒  b²=19, b=√19
ответ. линейные размеры параллелепипеда  √30, √19,  √6.

Решить . 1. в равнобокой трапеции большее основание равно 16 см., боковая сторона 2 корень квадратны
4,4(100 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ