Нам известны все 3 измерения прямоугольного параллелепипеда, значит мы можем найти его диагональ.
a, b, c - его различные рёбра; d - его диагональ.
ответ: 14 см.
Если 3√3 выражен в см.
Доказательство этой формулы:
Все грани прямоугольного параллелепипеда прямоугольники, это определение. Поэтому квадрат диагонали основания будет равен a²+b². Рассмотрим плоскость в которой есть диагональ параллелепипеда и наша диагональ прямоугольника из основания. Это плоскость образует сечение, которое является прямоугольником т.к. боковые рёбра перпендикулярны основанию, а наша диагональ прямоугольника лежит именно в основании. Так вот одна сторона прямоугольника это боковое ребро, а вторая это диагональ, которую мы искали вначале. При этом диагональ этого прямоугольника и является диагональю параллелепипеда, то есть d²=c²+(a²+b²), т.к. это прямоугольник. Что и требовалось доказать.
1) расстояние от центра до одного из катетов =2,5 см - это средняя линия треугольника и,значит,другой равен 5 см, а второй катет находим по теореме Пифагора 13² = 5² +х ² х² = 169 -25 х² = 144 х = 12 2) треугольник АСЕ прямоугольный , у которого одна сторона равна 4, другая 8 а, третья по теореме Пифагора 8² = 4² + х² х² = 64 - 16 х² = 48 х = 4√3 радиус вписанной окружности найдем из площади треугольника 1/2 Р*r = 1/2 ab 1/2 (4 +8 +4√3)*r = 1/2 *4 *4√3 (12 +4√3)*r = 16√3 (3 +√3)*r = 4√3 r = 4√3/(3+√3)? избавимся от иррациональности в знаменателе r = 2*(√3 -1)
Нам известны все 3 измерения прямоугольного параллелепипеда, значит мы можем найти его диагональ.
a, b, c - его различные рёбра; d - его диагональ.
ответ: 14 см.
Если 3√3 выражен в см.
Доказательство этой формулы:
Все грани прямоугольного параллелепипеда прямоугольники, это определение. Поэтому квадрат диагонали основания будет равен a²+b². Рассмотрим плоскость в которой есть диагональ параллелепипеда и наша диагональ прямоугольника из основания. Это плоскость образует сечение, которое является прямоугольником т.к. боковые рёбра перпендикулярны основанию, а наша диагональ прямоугольника лежит именно в основании. Так вот одна сторона прямоугольника это боковое ребро, а вторая это диагональ, которую мы искали вначале. При этом диагональ этого прямоугольника и является диагональю параллелепипеда, то есть d²=c²+(a²+b²), т.к. это прямоугольник. Что и требовалось доказать.
Смотри на рисунок, для понятности.