Умоляю, выручите, это сор. Задание 3. Для острого угла а найдите sin a, cos a, tga, если ctga = 1/3
Задание 4. Вертикальная башня высотой 30 м видна из точки N на поверхности земли под углом 30°. Найдите расстояния от точки N до основания башни и до самой высокой точки башни.
<BAC=<BCA.
Пусть эти углы будут х.<BAC=<BCA=х
<BCA=<CAE как накрест лежащие углы при пересечении двух параллельных прямых АЕ и ВС секущей АС. Но <BCA=<BAC, значит <BAC=<CAE=x
<B=180-(<BAC+<BCA)=180-2x
В равнобедренной трапеции <B=<C=180-2x.
Рассмотрим треуг-ик ЕАС. Здесь <CAE=x, а углы ЕСА и Е при основании СЕ должны быть равны, т.к. ЕАС - равнобедренный по условию треугольник. Выразим, чему равен угол ЕСА:
<ECA=<E=<C-<BCA=(180-2x)-x=180-3x
Также угол Е в равнобедренной трапеции должен быть равен углу А, т.е. <E=x+x=2x
Видим, что <E=180-3x и <E=2x. Т.е.
180-3х=2х
180=5х
х=36
<A=<E=2*36=72
<B=<C=180-2*36=108