1) Равносторонний треугольник имеет 3 оси симметрии, каждая проходит через вершину и середину противоположной стороны, угол между любыми двумя осями 60°
2) Квадрат имеет 4 оси симметрии, каждая проходит либо через противоположные вершины либо через середины противоположных сторон, и угол между любыми двумя осями не меньше 45°.
3) Правильный 5-угольник имеет 5 осей симметрии, каждая проходит через вершину и середину противоположной стороны и угол между ними не меньше 36°.
4) Правильный 6-угольник имеет 6 осей симметрии, каждая проходит либо через противоположные вершины либо через середины противоположных сторон, и угол между двумя соседними осями 30°.
Значит, правильный многоугольник с наименьшим числом сторон и углом 30° между осями - правильный 6-угольник
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см
Так как боковые стороны равнобедренного треугольника равны,
основание, выраженное целым числом, при периметре 11 см
будет выражено нечетным числом.
Сумма 2-х сторон не может быть равна или меньше третьей.
Отсюда варианты:
Основание 1, стороны по 5 см
Основание 3, стороны по 4 см
Основание 5, стороны по 3 см.