М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Raf4ik15
Raf4ik15
22.05.2022 01:18 •  Геометрия

2. В прямоугольном треугольнике ABC ZC= 90°, катеты аи b соот- ветственно равны 63 cm и 6 cm. Найдите гипотенузу с, острые
углы а и в этого треугольника. Решите задачу двумя

👇
Открыть все ответы
Ответ:
botatj
botatj
22.05.2022
Для начала вспомним, что для расчета объема потребуется высота пирамиды. Мы можем найти ее по теореме Пифагора. Для этого нам потребуется длина диагонали, а точнее – ее половина. Тогда зная две из сторон прямоугольного треугольника, мы сможем найти высоту. Для начала находим диагональ:
d^2=a^2+a^2
Подставим значения в формулу:
d^2=6^2+6^2=36+36=72 cm

Высоту h мы найдем с и ребра b:
h=sqrt{{d/2}^2+b^2}
h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm

Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды:
S=6^2=36{cm}^2
Подставим найденные значения в формулу расчета объема:
V={1/3}*36*7,8=14,6{cm}^3

Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле:
S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12

Площадь всей пирамиды равна:
S=4*S_bok + S_osn= 4*12 + 36=84
4,4(16 оценок)
Ответ:
assija56
assija56
22.05.2022

   Назовём данный треугольник АВС.

ВВ1- высота к АС.

АА1=СС1 - высоты к равным боковым сторонам.

   Высота равнобедренного треугольника, проведенная к основанию, является его биссектрисой и медианой. ⇒

АВ1=СВ1=30:2=15 см

∆ АВВ1=∆ СВВ1 ( по трем сторонам).

Из ∆ АВВ1 по т.Пифагора

   ВВ1=√(AB²-AB1²)=√(17²-15²)=8 см

Высоты к боковым сторонам найдем из площади ∆ АВС

   Заметим, что ∆ АВС - тупоугольный ( АС² > АВ²+ВС²), поэтому высоты, проведенные к боковым сторонам тупоугольного треугольника, лежат вне его. 

S(ABC)=BB1•AC:2=8•15=120 см²

AA1=2S(ABC):BC

   AA1=CC1=\frac{240}{17} =14 \frac{2}{17} см


Найдите высоты равнобедренного треугольника,если его боковая сторона равна 17 см,а основание 30 см
4,4(27 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ