Объяснение:
а)
R=AB/2=8/2=4см.
S(ABCD)=AB²=8²=64см²
Sкр=πR²=4²*3,14=16*3,14=50,24 см².
Sз.ф=S(ABCD)-Sкр=64-50,24=13,76 см²
ответ: 13,76см
б)
О1А=ОА/2=6/2=3см
Sб.кр.=π*OA²=3,14*6²=113,04см²
Sм.кр.=π*О1А²=3,14*3²=28,26см².
Sз.ф.=Sб.кр.-Sм.кр.=113,04-28,26=84,78см²
ответ: 84,78см²
в)
Теорема Пифагора.
АС=√(АВ²+ВС²)=√(6²+8²)=10см.
R=AC/2=10/2=5см.
Sкр=πR²=3,14*5²=78,5см².
S(ABCD)=AB*BC=6*8=48см²
Sз.ф.=Sкр-S(ABCD)=78,5-48=30,5см²
ответ: 30,5см²
г)
АВ=АО√3=9√3 см
S(∆ABC)=AB²√3/4=(9√3)²√3/4=81*3√3/4=
=60,75√3≈105,22 см²
Sкр=π*АО²=3,14*9²=254,34 см²
Sз.ф.=Sкр-S(∆ABC)=254,34-105,22=
=149,12 см²
ответ: 149,12 см²
Обозначения:
Sкр- площадь круга.
Sб.кр- площадь большого круга.
Sм.кр- площадь маленького круга
Sз.ф.- площадь закрашенной фигуры.
Далее, внешний угол при вершине ЭТОГО (отрезанного) треугольника равен 2*36° = 72°, то есть второй треугольник тоже равнобедренный. То есть биссектриса угла при основании делит треугольник на два равнобедренных треугольника.
Если обозначить длину биссектрисы L, основание a, боковую сторону b, и отрезок от вершины (противоположной основанию) до конца биссектрисы x, то получается
x = L = a; (одна из сторон уже найдена, основание a = L = √20)
По свойству биссектрисы
b/a = x/(b - x); то есть b/a = a/(b - a); или (b/a - 1)*(b/a) = 1;
(b/a)^2 - (b/a) - 1 = 0;
b/a = (√5 + 1)/2;
если подставить a = 2√5; получится
b = 5 + √5;