Дано: Треугольник АВС. АВ=ВСб М∈BD, K∈AC. MK║AB. <ABC=126°,<BAC=27°.
Найти <MKD, <KMD и <MDK.
Решение.
Треугольник АВС равнобедренный, следовательно BD - биссектриса, высота и медиана треугольника. <BAC=<BCA=27°, Значит
<ABD = (1/2)*(<ABC) = 126/2 = 63°. <BDA=<MDK = 90°.
MK параллельна АВ, значит <MKD=<BAC=27°, а <KMD=<ABD=63°, как соответственные углы при параллельных прямых АВ и МК и секущих AD и BD соответственно.
ответ: <MKD=27°, <KMD=63°, <MDK=90°.
Свойство касательных к окружности, проведенной из одной точки:
отрезки касательных равны.
х-радиус вписанной окружности
(см. рисунок в приложении)
Учитывая, что периметр равен 54, составляем уравнение:
х+х+х+х+3+3+12+12=54
4х+30=54
4х=24
х=6
2. Из условия:
∠С=х
∠А=4х
∠В=4х-58°
Так как четырехугольник вписан в окружность, то
∠А+∠С=180°
∠В+∠Д=180°
4х+х=180°
5х=180°
х=36°
Тогда
∠С=36°
∠А=4х=4·36°=144°
∠В=4х-58°=144°-58°=86°
∠В+∠Д=180° ⇒ ∠Д=180°-∠В=180°-86°=94°
ответ. ∠А=144°
∠В=86°
∠С=36°
∠Д=94°