Наклонная равна 20см. чему равна проекция этой наклонной на плоскость, если
наклонная составляет с плоскостью угол 45 градусов.
L=20 cм, l = 20*cos45 = 20*√2/2 = 10√2 см
Точка А отстоит от плоскости на расстоянии 26 см. Найдите длину наклонной, которая составляет с плоскостью угол 30 градусов .
H=26 см, L=H/sin30 = 2H = 52 см
Дан куб ABCDA1B1C1D1,
1) Выпишите грани, параллельные ребру AA1 - не считая граней в которых лежит АА1, BB1C1C и СС1D1D
2) выпишите рёбра, скрещивающиеся с ребром ВС - А1В1, С1D1
3) выпишите рёбра, перпендикулярные плоскости (ABB1) - BC,B1C1,AD,A1D1
4) выпишите плоскости, перпендикулярные ребру AD - ABB1A1, CDD1C1
Радиусы оснований усечённого конуса равны Здм и 7дм. Образующая - 5дм. Найдите площадь осевого сечения.
Осевое сечение - трапеция с основаниями 6дм и 14 дм, и боковой стороной 5дм
S = h*(6+14)/2 = 10h.
Высоту найдем по теореме Пифагора h^2=5^2-((14-6)/2)^2 = 25-16 = 9, h=3 дм
S = 10*3 = 30 дм^2
Шар пересечён плоскостью на расстоянии Зсм от центра. Найдите площадь сечения, если радиус шара равен 5см.
Радиус сечения найдем из треугольника r^2 = R^2 - h^2 = 5^2-3^2 = 25-9 = 16
r = 4 см. S = пr^2 = 16п см^2
Измерения прямоугольного параллелепипеда равны 8см, 12см, 18см. найдите ребро куба, объём которого равен объёму этого параллелепипеда.
V = abc = 8*12*18 = 1728 см^3
Vкуба = а^3 = 1728, a = 4 ∛18 см
Пусть СК=у, тогда ВК=6-у.
Из прямоугольных треугольников квадрат катета ВР можно найти двумя сразу их объединим:
ВС²-СР²=АВ²-АР²,
6²-х²=5²-(4-х)²,
36-х²=25-16+8х-х²,
х=27/8.
Аналогично из прямоугольных тр-ков АСК и АВК:
АС²-СК²=АВ²-ВК²,
4²-у²=5²-(6-у)²,
16-у²=25-36+12у-у²,
у=27/12.
В тр-ке АВС cosC=(АС²+ВС²-АВ²)/(2АС·ВС)=(16+36-25)/(2·4·6)=27/48.
В тр-ке CPK по теореме косинусов РК²=СР²+СК²-2СР·СК·cosC.
РК²=(27/8)²+(27/12)²-2·27·27·27/(8·12·48)=(729/64)+(729/144)-(27³/48²)=(729/64)+(324/64)-(19683/2304)=(1053/64)-(19683/2304)=2025/256.
РК=45/16=2.8125 - это ответ.