Если хорошо посмотреть на правильный (равносторонний ) Δ АВС и точку О (центр сферы. то увидишь правильную пирамиду, у которой боковое ребро - радиус сферы. Высота пирамиды =2 и сторона основания = 6 Надо найти боковое ребро ( оно = R и S = 4πR^2) Смотрим только на пирамиду. Проведена высота ОК. Точка К - это точка пересечения медиан (высот, биссектрис). Медианы в равностороннем треугольнике делятся в отношении 1:2. Ищем медиану по т. Пифагора m^2 = 6^2 - 3^2 = 36 - 9 = 27 m = 3√3 Боковое ребро можно найти из Δ АО К. АО ищем, ОК = 2, АК = 2/3·3√3=2√3/3 = R сферы. Ищем площадь сферы. S = 4π R^2 = 4π(2√3/3)^2=16π/3
Если в данном прямоугольном треугольнике есть угол, равный 60-ти градусам, то в нём будет угол, равный 30-ти градусам(180-90-60=30). Как нам известно, в треугольниках напротив большего угла лежит бОльшая сторона этого самого треугольника, т.е. напротив угла в 30 градусов лежит меньший катет этого прямоугольного треугольника. А как нам всем известно, в прямоугольном треугольника сторона, лежащая напротив угла в 30 градусов, равна половине его гипотенузы. Т.е. разница между гипотенузой и меньшим катетом треугольника является просто разницей между гипотенузой и её половины. Значит сама гипотенуза равна 6-ти см(3*2=6), а меньший катет равен 3-ём см. ответ: гипотенуза=6 см, меньший катет=3 см.
Внешний угол при вершине A является смежным с уголм BAC, значит их сумма будет 180°
<BAC = 180 - внешний угол = 180 - 120 = 60°
Но треугольник ABC - равнобедренный.
Если AB = BC, то угол BAC равен углу BCA.
Угол B = 180 - угол A - угол C = 180 - 60 - 60 = 60
Все три угла треугольника равны, следовательно треугольник равносторонний.
AC = AB = x
AC + AB = x + x = 2x = 18
x = 9
Если AB = AC, то угол ACB = углу ABC = α
60 + α + α = 180
2α = 120
α = 60
Опять же, треугольник равносторонний, значит сторона = 9
ответ: 9