1. Дано: КМРТ - трапеция, КМ=РТ, КТ=14 дм, МР=8 дм. МН - высота, МН=4 дм. Найти КМ.
Решение: проведем высоту РС.
МР=СН=8 дм.
ΔКМН=ΔРСТ по катету и гипотенузе, КН=СТ=(14-8):2=3 дм.
Рассмотрим ΔКМН - прямоугольный, КН=3 дм, МН=4 дм, значит КМ=5 дм (египетский треугольник).
ответ: 5 дм.
2. Дано: КМСТ - прямоугольник, Р=56 см, КТ-МК=4 см. Найти МТ.
Решение: МК+КТ=56:2=28 см. Пусть КТ=х см, тогда МК=х-4 см.
Составим уравнение: х+х-4=28; 2х=32; х=16.
КТ=16 см; МК=16-4=12 см. Тогда по теореме Пифагора
МТ=√(16²+12²)=√(256+144)=√400=20 см.
(или просто: МТ=20 см, т.к. МК:КТ=12:16=3:4; МКТ - египетский треугольник)
ответ: 20 см.
Дано:
Окружность (O;R)
ΔAOB
AB = 32 дм
OC = 12 дм
-----------------------------------
Найти:
C - ?
1. Хорда AB = 32 дм
OC = 12 дм (расстояние от центра до хорды)
AC = CB = 1/2AB = 1/2 × 32 дм = 16 дм
2. ΔOCB — прямоугольный, так как ∠BCO — прямой.
По теореме Пифагора: BO = √OC² + CB²
BO = √(12 дм)² + (16 дм)² = √144 дм² + 256 дм² = √400 дм² = 20 дм ⇒ R = BO = 20 дм
3. Воспользуемся формулой длины окружности, именно по такой формуле мы найдем длину окружности: C = 2πR
C = 2π × 20 дм = 40π дм = 40×3,14 дм = 125,6 дм
ответ: C = 125,6 дм