М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rekardo
rekardo
13.12.2021 23:43 •  Геометрия

Дан прямоугольный треугольник CKF с прямым углом C. Установите соответствия между отношениями сторон и тригонометрическими функциями острого угла: а)
b)
с)

1) синус угла K;

2) косинус угла K;

3) синус угла F;

4) косинус угла F;

5) тангенс угла K;

6) тангенс угла F;

7) котангенс угла K;

8) котангенс угла F.

и не надо типо,,прости мне просто нужны" я всё равно удабю ваш ответ и у вас их заберут​


\frac{kc}{kf}
\frac{kc}{cf}
\frac{cf}{kf}

👇
Ответ:
Masha6655
Masha6655
13.12.2021

Синус острого угла прямоугольного треугольника - это отношение противолежащего катета к гипотенузе.

Косинус острого угла прямоугольного треугольника - это отношение прилежащего катета к гипотенузе.

Тангенс острого угла прямоугольного треугольника - это отношение противолежащего катета к прилежащему.

Котангенс острого угла прямоугольного треугольника - это отношение прилежащего катета к противолежащему.

а) - это 2) и 3);

b) - это 6) и 7);

c) - это 1) и 4).

4,4(67 оценок)
Открыть все ответы
Ответ:
диана27th
диана27th
13.12.2021

Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).

8.2.

Построим точки A1 и B1 на сторонах BC и AC соответственно так, что  BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 :  2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.

8.3.

Пусть O — центр данной окружности,  AB — хорда, проходящая через точку P,  M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.

8.4.

Пусть R — радиус данной окружности,  O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.

8.5.

Пусть R — радиус окружности S,  O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса  

Ц

 

R2 – d2/4

 

с центром O.

8.6.

Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,  

SR

EC

=   PQ

EC

=   BQ

BC

=   FR

FC

, т. е. точка S

4,6(25 оценок)
Ответ:
rimmarimma84
rimmarimma84
13.12.2021

От всех сторон треугольника равноудалена точка пересечения его биссектрис, т.е.  центр вписанной окружности. 

Вершиной угла, под которым видна гипотенуза ( она - длинная сторона прямоугольного треугольника),  является центр вписанной окружности, а его величина - разность между суммой углов треугольника и полусуммой его острых углов 

∠АDВ=180°-0,5•(38°+52°)=135°

Заметим, что тупой угол, образованный биссектрисами острых углов прямоугольного треугольника всегда равен 135°, так как их сумма 90°, а полусумма -– 45°

4,7(39 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ