mn - средняя линия
ab=cd=8
bc=6
mn = (bc+ad) / 2
уг. авс=уг. всd=120
уг. bad = уг. cda = 360-120-120=60
проведем высоту вн
рассмотри треугольник анв - прямоугольный
уг. в = 90-уг. = а=90-60=30
ан=0,5*ав=0,5*8=4 (свойство угла в 30 градусов в прямоугольном треугольнике)
проведем высоту cl
рассмотри треугольник cld - прямоугольный
уг. c = 90-уг. = d=90-60=30
dl=0,5*cd=0,5*8=4 (свойство угла в 30 градусов в прямоугольном треугольнике)
ad=ah+hl+ld
hl=bc=6
ad=4+6+4=14
mn = (6+14) / 2=20/0=10
Доказательства в объяснении.
Объяснение:
1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а вписанный угол равен половине градусной меры дуги, на которую он опирается.
Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.
2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС. ∠АСВ = ∠КАВ (доказано выше).
По сумме внутренних углов треугольников АВС и КАВ имеем:
∠АВС = 180 - (∠АСВ + ∠ВАС)
∠АКВ = 180 - (∠КАВ + ∠АВК) =>
∠АВС = ∠АКВ. => ∠АВК = ∠АКВ =>
Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.
3. Треугольники АСВ и КАВ подобны по 2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sabc/Sabk = k² = АС²/АВ².
По теореме косинусов в тр-ке АВС найдем:
АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).
Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>
к² зависит только от угла α, то есть
отношение площадей зависит только от величины угла АСВ.
Что и требовалось доказать