Перед решением задачи необходимо построить треугольник АВС (угол С 90 градусов), провести высоту СН, нанести известные данные.
1. Найдем сторону ВС треугольника АВС.
sinА = ВС/АВ
Подставим известные значения.
0,6 = ВС/25
ВС = 25 * 0,6 = 15
2. Найдем сторону АС треугольника АВС.
По теореме Пифагора: АВ2 = ВС2 + АС2
АС2 = АВ2 - ВС2 = 252 - 152 = 625 - 225 = 400
АС = 20
3. Рассмотрим треугольник АСН:
Угол Н равен 90 градусов, АС = 20, sinА = 0,6.
sinА = СН/АС
Подставим известные значения.
0,6 = СН/20
СН = 0,6 * 20 = 12.
ответ: Высота СН = 12.
∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°