Объяснение:
r - радиус вписанной окружности, r = 12 см.
АВ = NP = 2r = 2 x 12 = 24 см.
СН - высота трапеции, СН = АВ = 24 см.
По теореме Пифагора в треугольнике НСD:
CD^2 = CH^2 + HD^2;
25^2 = 24^2 + HD^2;
625 = 576 + HD^2;
HD^2 = 49;
HD = 7 см.
Пусть NC = x см. Тогда по свойству касательных СК = NC = х см.
DK = DC - CK = 25 - x.
PH = NC = x;
DP = DH + PH = 7 + x.
По свойству касательных: DP = DК. Получим уравнение:
7 + х = 25 - х;
х + х = 25 - 7;
2х = 18;
х = 9.
NC = 9 см;
ВС = BN + NC = r + x = 12 + 9 = 21 см;
AD = AP + PD = r + 7 + x = 12 + 7 + 9 = 28 см.
Периметр трапеции:
P = AB + BC + CD + AD = 24 + 21 + 25 + 28 = 98 см.
Тело вращения будет походить на детскую игрушку юла.
Т.е. верхняя и нижняя части - два конуса с общим основанием АА₁ и радиусом, равным высоте АО данного треугольника, проведенным к средней по величине стороне, равной 14 см.
Чтобы найти эту высоту, нужно найти по формуле Герона площадь треугольника. Вычисления приводить не буду - треугольник с такими сторонами встречается в задачах часто, его площадь легко запоминается и равна 84 см²
S=a*h:2, где а - сторона, h- высота к ней.
2S=a*h
h=2S:а
h=168:14=12 см - это радиус окружности - общего основания конусов.
Рассмотрим рисунок.
Площадь тела равна сумме площадей боковых поверхностей конуса АВА₁ и конуса АСА₁
S =πrl
S₁=π*12*13
S₂=π*12*15
S общ=12π(13+15)=336 π
при π=3,14
S=1055,04см²
при π полном ( на калькуляторе)
S=1055,575 см²