Пусть в треугольнике АВС угол А равен а, угол с равен ь, проведены биссектрисы AD и СЕ, которые пересекаются в точке О (см. рисунок). Рассмотрим треугольник АОС. Сумма его углов равна 180 градусам, тогда угол АОС равен 180-1/2ВАC-1/2BCA= 180- AC - ECA = 180 - 1/2 (a+b). Угол, под которым пересекаются две прямые это наименьший из углов, которые получаются при их пересечении. Докажем, что угол ЕОА будет меньше угла АОС, тогда угол ЕОА - угол, под которым пересекаются биссектрисы. Действительно, угол ЕОА является смежным с углом АОС, тогда он равен 1/2(a+b). Так как а+ь<180, 1/2(a+b)<90 и 2(a + b) < 180 /2(a+b), то есть, какими бы ни были углы а и ь, угол ЕОА всегда будет меньше угла АОС. Окончательный ответ - 1/2(a+b).
1). Неизвестные углы 140°, 100°. 2). 14 сторон, Сумма углов 2160°.
Объяснение:
1) Один из углов выпуклого четырехугольника равен 60 градусам, второй и третий относятся как 7:3, а четвертый равен полусумме второго и третьего. Найдите неизвестные углы четырехугольника.
60°+15х = 360° => х = 20°
ответ: 140°, 60°, 100°.
2)В выпуклом многоугольнике 77 диагоналей. Найдите количество его сторон и сумму углов.
Формула числа диагоналей d = (n²-3n)/2.
n² - 3n -154 = 0 => n = (3+√(9+616)/2 = 14.
Формула суммы углов выпуклого многоугольника 180(n-2)
180(14-2) = 2160°.
ответ: 14 сторон, 2160°.
Объяснение:
ага