а) Равенство треугольников АОВ и СОD: АВ=СD как противолежащие стороны параллелограмма АО=ОС и ОВ=OD, по свойству диагоналей параллелограмма (точка пересечения делит их пополам) Т.е. треугольники равны по трем сторонам. (аналогично: углы АОВ и СOD равны как вертикальные, а стороны, прилежащие к углу О в обоих треугольниках равны по свойству точки пересечения диагоналей параллелограмма, т.о. треугольники равны по двум сторонам и углу между ними, легко доказать равенство и по 2 углам и стороне между ними: углы ОАВ и ОСD равны как накрест лежащие при параллельных прямых(сторонах АВ и СD параллелограмма), то же верно и для углов ОВА и ODC, а стороны между ними равны как стороны параллелограмма)
б) т.к. О точка пересечения диагоналей параллелограмма, она делит каждую из них пополам, т.е. стороны треугольника: АО=10:2=5см и ВО=6:2=3см, а АВ=5 см из условия, значит периметр АОВ=5+3+5=13см
Объяснение:
Дано: АВ=12см; угол АВС=120°; Равсd=88см
Найти: Sabcd-?
1) Равсd=2*АВ+2*АD;
88=24+2х
2х=64
х=32см
АD=ВС=32см;
2) Sabcd=АВ*ВС*sin угла АВС= 12*32*(корень из 3/2)=192 корня из 3