Объяснение:
У ромба все стороны равны.
ΔMNP - равносторонний (все углы по 60°). Значит сторона ромба равна 30 см, а периметр Р=4*30=120 см.
***
2. Пусть меньшая сторона равна х см. Тогда большая будет х+5.
2(х+х+5)=66;
2х+5=33;
2х=28;
х=14 см - меньшая сторона.
х+5=14+5=19 см - большая сторона.
Проверим:
Р=2(14+19)=2*33=66 см. Все верно.
***
3. Диагонали прямоугольника в точке пересечения делятся пополам. АО=ОС=ОD=24/2=12 см.
РAOD=AO+OD+AD=12+12+16= 40 см.
***
4. Диагонали в ромбе являются и биссектрисами.
Если ∠ВАС=18°, то ∠А=18°*2=36°.
∠А=∠С=36°.
∠В=180°-(∠ВАС+∠ВСА)=180°-(18°+18°)=180°-36°=144°;
∠В=∠D=144°.
***
5. Пусть АК=4х. Тогда KD=2х.
4х+2х=12;
6х=12;
х=2;
АК=4*2=8 см;
KD=2*2=4 см.
∠ABK=∠KBC=180°/3=60° - ( равны смежному углу с углом В.)
Значит ΔАВК - равносторонний: АВ=ВК=AK=СD=4 см.
Р=2(АВ+ВС)=2(4+12) =2*16=32 см.
ΔABN=ΔCDK по катету и гипотенузе, AB=DC /противолежащие стороны прямоугольника равны/, KD=BN /как равные высоты в равных треугольниках АВС и АDC, на которые их разбивает диагональ АС/
Отсюда следует, что AN=СК.
Рассмотрим Δ АВС , в нем ВN²=(AN*NC) по свойству высоты, проведенной из вершины прямого угла на гипотенузу. Пусть AN=х; х>0, тогда NC=(9+х); 36=х*(9+х); х²+9х-36=0; По Виета х=-12, х∈∅, х=3, Значит, АС=2*х+9=2*3+9=9+6=15/см/
Площадь прямоугольника найдем как сумму площадей двух одинаковых прямоугольных треугольников АВС и АDC. 2*(АС*ВN/2)=15*6=90/см²/
ну нечего страшного тяу тяу тяу тяу. тяу тяу тяу тяу ТЯУ