Пусть JH искомое расстояние. JH перпендикулярно BC. Поскольку JA перпендикулярна плоскости,то AH проекция перпендикуляра JH на плоскость. Откуда по теореме о 3 перпендикулярах: выходит что AH перпендикулярна BC,то есть высота треугольника ABC. Меньший угол всегда лежит против меньшей стороны ,то есть напротив стороны BC=27 Найдем площадь треугольника по формуле Герона: p=(51+30+27)/2=54 S=sqrt(54*3*24*27)=324 Откуда : раз S=AH*BC/2 AH=324*2/27=24 И наконец по теореме Пифагора: JH^2=10^2+24^2=676=26^2 JH=26 ответ: JH=26
У равнобедренного треугольника медиана к основанию будет и высотой и биссектрисой. Так как треугольник еще и равнобедренный, то углы при основании = 45 градусов, тогда: 1. Медиана = высота образует 2 равнобедренных прямоугольных треугольника. 2 стороны при основании равны и = 4 => основание исходного треугольника = 8 см. А стороны при основании = см 2. Аналогично первому случаю имеем основание 6 см, а стороны при основании 3. диагональ прямоугольника образует 2 прямоугольных треугольника и является их гипотенузой. Катеты - стороны. По теореме Пифагора получаем см. 4. Трапеция равнобокая. Высота отсечет от нее прямоугольный треугольник с гипотенузой - боковой стороной = 5см и вторым катетом = (14-8)/2=3 см. Тогда высота трапеции = см.
a√2