Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. АВ1 - проекция диагонали DB1 призмы на боковую грань АА1В1В. Значит угол АВ1D = α. Тогда сторона основания призмы (квадрата) АD=DB1*Sinα=а*Sinα. Диагональ основания ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α). Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vп=64*(1/4)*√2/2=8√2. Объем описанного цилиндра равен So*h, где So=πR². R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2). Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2. ответ: Vп=8√2. Vц=π*4√2.
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
2. Площадь прямоугольника равна произведению его смежных сторон: S = ab. Доказательство: Достроим прямоугольник до квадрата со стороной (a + b). Площадь квадрата равна квадрату его стороны: Sкв = (a + b)² Площадь квадрата равна сумме площадей фигур, составляющих его: Sкв = a² + b² + 2S a² + b² + 2S = (a + b)² a² + b² + 2S = a² + b² + 2ab 2S = 2ab S = ab. Доказано.
3. Если в четырехугольник можно вписать окружность, то суммы его противолежащих сторон равны. Значит, периметр четырехугольника равен 12 + 12 = 24 см. Площадь любого многоугольника, в который можно вписать окружность вычисляется по формуле: S = pr, где р - полупериметр, r - радиус вписанной окружности. S = 24/2 · 5 = 12 · 5 = 60 см²
Тогда сторона основания призмы (квадрата)
АD=DB1*Sinα=а*Sinα. Диагональ основания
ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α).
Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vп=64*(1/4)*√2/2=8√2.
Объем описанного цилиндра равен So*h, где So=πR².
R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2).
Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α).
При а=4 и Sin30° объем призмы равен
Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2.
ответ: Vп=8√2. Vц=π*4√2.