Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°
Дано: АВ=СД=8см, ВС=6см, АД=16см, угол В = 45градусов. Решение: S=(a+b)делим на 2 и всё это умножаем на h-высоту. из точки В к основанию АД проводим высоту, обозначим её точкой К, высота будет перпендикулярна СД. Образуется треугольник АВК, в котором угол при к равен 90 градусов. значит, в треугольнике АВК: АВ=8см, АК=5см ( т.к. большее основание равно 16см, меньше равно 6, следовательно 16-6=10-сумма длин двух катетов при большем основании, 10:2=5-длина одного катета в треугольнике при большем основании). Чтобы найти площадь трапеции, нам надо знать длину высоты ВК(или h) (по-другому это будет неизвестный катет в прямоугольном треугольнике)., а чтобы узнать длину высоты,используем теорему Пифагора c^2=a^2+b^2. из этой теоремы находим неизвестный катет---> a^2=c^2-b^2. подставляем теперь числа к этой формуле: а^2=8^2 - 5^2 a^2=64-25 a^2=39 a=квадратный корень из 39-это высота h теперь найдём площадь трапеции: S=(6+16)/2 и умножаем на квадратный корень из 39 = 11 умноженное на корень из 39 ответ:S=11 умноженное на корень из 39
Да, можно.
Объяснение на фото.
Надеюсь