Объяснение:
├ █(Дано: [email protected]∡FKO=∡[email protected]∡BFA=∡FBC)]Доказать ΔCFB=ΔABF
(рассмотрим ΔFKO ΔBLO: углы в точке О вертикальные )¦█(+ дано поусловию задачи,на лицо второй признак равенства треугольников,@(по стороне и прилежащих к ней углам)ΔFKO =ΔBLO ,углы ∡FKO=∡BLO @являются внутренними накрест лежащие, следовательно FK⫽LB ,@а в ΔCFB и ΔABF ,∡KFO=∡LB0 (из ΔFKO =ΔBLO) являются внутренними @накрест лежащими, @ )
буквенно описывать устал,черный цвет-дано,красный получен из ΔFKO =ΔBLO
следует что фигура ABCF-паралелограмм,а ΔCFB=ΔABF по стороне
и прилежащим к ней углам,
Вписанные углы РMN и KNM опираются на равные хорды. Следовательно, дуги, стягиваемые этим хордами, равны. Вписанные углы, опирающиеся на равные дуги (или на равные хорды), равны.
∠РMN=∠KNM
Проведем хорды МР и КN.
В треугольниках MPN и MKN вписанные ∠Р = ∠К (опираются на диаметр).⇒
Прямоугольные ∆ МРN=∆ MKN по острому углу и общей гипотенузе.
Отсюда следует равенство PNM=KMN
Эти углы - накрестлежащие при пересечении РN и MK секущей MN.
Если при пересечении двух прямых секущей накрестлежащие углы равны. эти прямые - параллельны. Доказано.