Дано: АВ=СД=8см, ВС=6см, АД=16см, угол В = 45градусов. Решение: S=(a+b)делим на 2 и всё это умножаем на h-высоту. из точки В к основанию АД проводим высоту, обозначим её точкой К, высота будет перпендикулярна СД. Образуется треугольник АВК, в котором угол при к равен 90 градусов. значит, в треугольнике АВК: АВ=8см, АК=5см ( т.к. большее основание равно 16см, меньше равно 6, следовательно 16-6=10-сумма длин двух катетов при большем основании, 10:2=5-длина одного катета в треугольнике при большем основании). Чтобы найти площадь трапеции, нам надо знать длину высоты ВК(или h) (по-другому это будет неизвестный катет в прямоугольном треугольнике)., а чтобы узнать длину высоты,используем теорему Пифагора c^2=a^2+b^2. из этой теоремы находим неизвестный катет---> a^2=c^2-b^2. подставляем теперь числа к этой формуле: а^2=8^2 - 5^2 a^2=64-25 a^2=39 a=квадратный корень из 39-это высота h теперь найдём площадь трапеции: S=(6+16)/2 и умножаем на квадратный корень из 39 = 11 умноженное на корень из 39 ответ:S=11 умноженное на корень из 39
Точка равноудалена от сторон прямоугольного треугольника, => эта точка проектируется в центр вписанной в треугольник окружности. радиус вписанной в треугольник окружности: r=(a+b-c)/2 1. по теореме Пифагора: c²=a²+b². a=9 см, b=12 см c²=9²+12². c=15 см r=(9+12-15)/2. r=3 см
2. прямоугольный треугольник: катет - расстояние от точки до плоскости треугольника, а=4 см катет - радиус вписанной в треугольник окружности, b=3 см гипотенуза - расстояние от точки до сторон треугольника, с. найти c²=3²+4² c=5 ответ: расстояние от точки до сторон прямоугольного треугольника 5 см
X² + ( X + 7)² = 13²
X² + X² + 14X + 49 = 169
2X² + 14X - 120 = 0
X² + 7X - 60 = 0
X1 = 5 X2 = - 12 - не подходит
Значит один катет равен 5 см, а второй 5 + 7 = 12см
P = 5 + 12 + 13 = 30 см
Объяснение:
Пусть один катет X, тогда другой (X+ 7). По теореме Пифагора составим равенство и найдём катеты.