1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
В прямоугольном треугольнике точки касания вписанной окружности со сторонами треугольника делят эти стороны на пары РАВНЫХ касательных, проведенных из одной точки (вершины треугольника) к этой окружности. Кроме того, эти точки отделяют на катетах, считая от вершины прямого угла, отрезки, равные радиусу вписанной окружности. Тогда можно записать, что X+Y=10 и по Пифагору (X+2)²+(Y+2)²=100. Решаем эту систему методом подстановки: Y=10-X. X²+4x+4+(10-X)²+4(10-X)+4=100. Отсюда X²-10X+24=0. X1=6, Y1=4. X2=4, Y2=6. то есть катеты нашего треугольника равны 6см и 8см. Тогда S=(1/2)*6*8=24см² Р=6+8+10=24см. это ответ.
Используют щелочные лекарства
Объяснение:
Щелочь противоположность кислоте