Объяснение:
Осевое сечение конуса - равнобедренный треугольник с боковыми сторонами (образующие конуса), основание - диаметр основания.
Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
S=h²/√3=8²/√3=64/√3=64√3/3.
Проведем диагонали: AC и BD, они пересекаются в точке O, под углом 90 градусов. Наш ромб разделился на 4 равных треугольника (по свойству диагоналей в ромбе). Рассмотрим один из них, например: ABO. Угол AOB равен 90 градусам, а угол ABO возьмем за 40 градусов. Сумма углов треугольнике равна 180 градусам, проводим следующее действие: 180-(90+40)=50 градусов, мы нашли угол OAB. Вернемся к ромбу, т.к. угол OAB равен 50 градусам, угол BAD, в ромбе, равен 100 градусам. Диагональ BD делит ромб на 2 равных треугольника: BAD и BCD (значит, углы BAD и BCD равны). Сумма углов в 4-угольнике равна 360 градусам, проведем следующее действие: 360-100*2=160 градусов (осталось на углы ABC и ADC) . Углы OBA и DOE равны, как соответственные (оба по 40 градусов), проведем следующее действие: (160-40*2)/2=40 (углы BOC и AOD, опять же, как соответственные).