Дано: шар с центром в точке
R=13- радиус шара
плоскость а -сечение шара
р(а, О)=5 (расстояние от центра шара О до плоскости а
Найти: r-радиус круга в сечении
Решение
Сечением будет круг. Найдем его радиус. От центра шара до центра сечения 5 - это катет треугольника, который получится, если соединим центр шара, центр сечения и точку пересечения шара с его сечением. 13 - гипотенуза, по теорПифагора:r=√13²-5²=√144=12. S=πr²=π144=144πкв.ед
Объяснение:
Чертим прямую р.
На прямой р ставим произвольно т А.
Если графически задан образец отрезка (если задана сторона-см.условие), то берем радиус окружности, равный отрезку, ставим иглу циркуля в т.А и делаем отметку на прямой р заданной длины. Это т.В.
Построим угол А будущего треугольника АВС прямым.
Для этого из т.А в обе стороны на прямой р делаем отметины циркулем произвольного радиуса, отмечаем точки А1 и А2. А1 и А2 равноудалены от т.А.
Теперь чертим окружность с центром в т.А1, радиусом чуть бОльшим, чем АА1. Не изменяя радиус, чертим окружность с центром в т.А2.
Эти окружности пересекутся в 2 точках, через них нужно провести прямую с.
По построению с⊥р.
Далее построим угол 60°в т.В.
Для этого чертим произвольную окружность с центром в т.В.
Выберем точку (одну из двух) пересечения этой окружности с прямой р, расположенную ближе к т.А. Обозначим т.В1.
Не меняя радиуса, построим окружность с центром в т.В1
Через одну из точек пересечения этих окружностей и т.В проведем прямую а.
пересечение прямых а и с дадут т.С-искомую вершину треугольника АВС.