Трапеция АВСД, АВ=СД, ВС=3,6, АД=10
проводим высоты ВН=СК на АД, треугольник АВН = треугольнику КСД по гипотенузе АВ=СД, и острому углу уголА=угол Д, АН=КД, четырехугольник НВСД прямоугольник, ВС=НК=3,6, АН=КД= (АД-НК)/2= (10-3,6)/2=3,2
оКРУЖНОСТЬ МОЖНО ВПИСАТЬ в трапецию когда сумма оснований = сумме боковых сторон, ВС+АД=АВ+СД, 3,6+10=АВ+СД, АВ=СД=13,6/2=6,8
треугольник АВН, ВН = корень (АВ в квадрате - АН в квадрате) =КОРЕНЬ (46,24-10,24)=6
ВН = диаметру окружности = 6, радиус=6/2=3
Площадь круга = пи х радиус в квадрате = 9пи
Первая задача на применение теоремы Пифагора. В ней есть перпендикуляр, равный 6см и проекция наклонной, равная 8см, наклонная ищется так √(6²+8²)=√(36+64)=√100=10/см/.
Решение второй задачи сводится к следующему.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
ВЫВОД. ВМ⊥ (АQC), доказано.
PS рисунком 19 я только что воспользовался, решая эту же задачу, см. ниже ответ.