Вот такое нахальное решение. Ну уж простите :)
Пусть катеты a и b, гипотенуза с. Я строю квадрат со сторонами (a + b), и дальше обхожу все 4 стороны по часовой стрелке, откладывая отрезок а от вершины.
(Пояснение.
Построенный со стороной (a + b) с вершинами АBCD, А - "левая нижняя" вершина. От А вверх - вдоль АВ, откладывается а, потом от В вправо - вдоль ВС откладывается а, потом от С вниз, вдоль CD, откладывается а, и от D вдоль DA откладывается а.)
Все эти точки соединяются.
Получился квадрат со стороной с, вписанный в квадрат со стороной (a+b).
Ясно, что центры этих квадратов совпадают. Это автоматически доказывает то, что надо в задаче.
(Если не ясно, постройте там пару треугольников из диагоналей обоих квадратов и отрезков длины а и докажите их равенство.
На самом деле не надо ничего доказывать - эта фигура из двух квадратов переходит сама в себя при повороте вокруг центра большого квадрата на 90 градусов. Поэтому центр "вписанного" квадрата совпадает с центром большого, то есть лежит на биссктрисе прямого угла большого квадрата. Ну, и биссектрисе прямого угла исходного треугольника, само собой - это одно и то же. Этих треугольников там даже четыре, а не один :), можно любой выбрать за исходный.)
Треугольник АВС, высота ВЕ=12см. Так средняя линия равна половине длине основания, то АС= (4,5+2,5)*2=14см, АЕ равна 4,5*2=9, ЕС=2,5*2=5. АВ и ВС находим по теореме Пифагора.
Из треугольника АВЕ находим АВ.
АВ^2=AE^2+BE^2=9^2+12^2=81+144=225
AB=15
Из треугольника ВСЕ находим ВС.
ВС^2=BE^2+EC^2=12^2+5^2=144+25=169
BC=13
Периметр Р=АВ+ВС+АС=15+13+14=42см