Площа прямої призми = площа основи*2 + периметр основи*висота.
В основі призми прямокутний трикутник. Його площа = катет1*катет2 /2. Периметр трикутника = сумма всіх сторін. В даному трикутнику відомі дві сторони. За теоремою Піфагора знайдемо гіпотенузу:
6*6+8*8 = 10*10
Гіпотенуза = 10 см
Отже, периметр = 10+6+8 = 24 см
площа = 8*6/2 = 48/2 = 24 кв.см
У прямій призмі бічні ребра перпендикулярні основі, тобто бічне ребро - висота призми.
Тепер площа пр. призми = 2*24 + 24*5 = 48+120 = 168 кв.см
Відповідь: 168 кв.см площа повної поверхні прямої призми.
62,5 т
Объяснение:
1) Переводим размеры на плане в действительные размеры.
В 1 см на карте, согласно условию задачи, 500 см. Значит:
а) длина улицы = 100 * 500 = 50 000 см, или
50 000 : 100 (т.к. в одном метре 100 см) = 50 метров;
б) ширина проезжей части улицы = 5 * 100 = 500 см;
500 : 100 = 5 метров.
2) Рассчитаем, чего равна площадь проезжей дороги в метрах квадратных. У нас прямоугольник 50 метров в длину и 5 метров в ширину. Площадь этого прямоугольника, который надо заасфальтировать, равна = 50 * 5 = 250 метров квадратных.
3) Т.к. на каждый метр квадратный дороги необходимо 250 кг асфальта, то 250 метров квадратных потребуется:
250 * 250 = 62 500 кг асфальта.
ответ лучше выразить в тоннах.
1 тонна - это 1000 кг.
62 500 : 1000 = 62,5 тонны - столько асфальта потребуется для того, чтобы заасфальтировать проезжую часть дороги длиной 50 метров и шириной 5 метров.
ответ: 62,5 т
Можно объяснить, почему высота прямоугольного треугольника равна произведению проекций катетов на гипотенузу?
Можно. Только не высота равна, а ее квадрат. И Вы сами наверняка не раз выводили это свойство при решении задач.
Высота прямоугольного треугольника, проведенная из вершины прямого угла,
есть среднее пропорциональное между отрезками, на которые делится
гипотенуза этой высотой.
Оно выведено из подобия треугольников, на которые высота, проведенная к гипотенузе,
делит исходный прямоугольный треугольник. Рассмотрим треугольники АСН и СНВ
Смотрим рисунок.
∠ АСН=90 -∠НСВ
∠ НВС=90 -∠НСВ
Если в прямоугольных треугольниках есть равные острые углы, то такие треугольники подобны.
Треугольники АНС и СНВ подобны
Меньший катет АН первого треугольника относится к меньшему катету СН второго треугольника,
как больший катет СН первого относится к большему катету НВ - второго.
АН:СН=СН:НВ
АН·НВ=СН²,
.
а АН и НВ - это и есть проекция катетов на гипотенузу