(x/3)^2+y^2=1 - каноническое уравнение эллипса полуоси 3 (вдоль оси х) и 1 (вдоль оси у) F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее фокусное расстояние с=корень(3^2-1^2)=2*корень(2)
F1=(-2*корень(2);0) F2=(2*корень(2);0)
2)9x^2+25y^2-1=0 (x/(1/3))^2+(y/(1/5))^2=1 - каноническое уравнение эллипса полуоси 1/3 (вдоль оси х) и 1/5 (вдоль оси у) F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее фокусное расстояние с=корень((1/3)^2-(1/5)^2)=4/15=0,2(6) F1=(-4/15;0) F2=(4/15;0)
Пусть угол 1=48 градусов, тогда вертикальный с ним угол 3 тоже равен 48 градусов по свойству вертикальных углов. А угол 2 смежный с 1. Он равен 180-48=132 градуса. Вертикальный с ним угол 4 равен тоже 132 град по свойству вертикальных углов. И наконец равны соответственные и накрест лежащие углы для нижней прямой: угол6=углу7=132 градуса и угол 5= углу 8 = 48 градусов
Объяснение:
S=ah=2*2=4