А) Сумма острых углов в прямоугольном треугольнике = 90°.
Пусть один угол из них = х, тогда второй острый угол = 90° - х
б) сумма внешних углов = 180°
Для угла = х внешний угол = 180° -х
для другого угла внешний угол = 180° -(90° -х) = 180° - 90° +х= 90° +х
в) (180° - х)/(90° +х) =12/15
(180° - х)/(90° +х) =4/5
5(180° - х) = 4(90° +х)
900 - 5х = 360 + 4х
9х = 540
х = 60° ( это один острый угол данного прямоугольного треугольника)
90° - 60° = 30°( это второй острый угол)
ответ: 60° и 30°
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°