Площадь боковой поверхности наклонной призмы равна сумме площадей ее граней.
Площади двух граней даны в условии. Необходимо найти площадь третьей грани и сложить все площади.
Площадь грани призмы - это площадь параллелограмма, которая равна произведению высоты на сторону, к которой она проведена.
Длина стороны у всех граней одинакова - это длина ребра призмы и равна 5 см.
Высота грани АА1СС1, площадь которой пока еще неизвестна, - это катет ас прямоугольного треугольника abc, образованного высотами граней призмы, так как
угол между гранями АА1СС1 и СС1В1В прямой по условию .
Чтобы найти высоту грани АА1СС1 (катет aс треугольника abc),
нужно найти высоты граней, площади которых известны
(найти катет bc и гипотенузу ac прямоугольного треугольника abc)
Из площади грани СС1В1В =50 см² найдем ее высоту (катет cb): cb=50:5=10 см
Из площади грани АА1В1В=130 см² найдем ее высоту (гипотенузу аb): аb=130:5=26 см
Высоту ас третьей грани найдем по теореме Пифагора: aс²=ab²-cb² ас=√(676-100)=√576=24 см
Площадь третьей грани равна 24*5=120 см² Sбоковая=120+130+50=300 см²
Давай обозначим меньшую проекцию (наклонной, которая 13) на базовую прямую незатейливой буквой х. Тогда вторая проекция (наклонной длины 15) будет по условию х+4. Искомое расстояние от точки до прямой обозначим букой Н. Тогда по теореме Пифагора образуется два уравнения:
13 ^2 = x^2 + H^2 15^2 = (x+4)^2 + H^2
Имеем два уравнения с двумя неизвестными. Можно решить. Ну так решим же эту систему методами алгебры.
Проще всего сначала будет исключить Н, тогда получим одно уравнение: 15^2 - (x+4)^2 = 13^2 - x^2 225 - x^2 - 8*x - 16 = 169 - x^2 40 = 8*x x = 5
То есть первая проекция у нас выходит 5 см, вторая, соответственно, 5+4 = 9 см.
Осталось последнее телодвижение - по теореме Пифагора же находим Н = корень ( 13*13 - 5*5) = корень(144) = 12 см -- это ответ.
Ну, у меня так получилось. Лучше проверь, а то с калькулятором не дружу.
Площадь боковой поверхности наклонной призмы равна сумме площадей ее граней.
Площади двух граней даны в условии. Необходимо найти площадь третьей грани и сложить все площади.
Площадь грани призмы - это площадь параллелограмма, которая равна произведению высоты на сторону, к которой она проведена.
Длина стороны у всех граней одинакова - это длина ребра призмы и равна 5 см.
Высота грани АА1СС1, площадь которой пока еще неизвестна, - это катет ас прямоугольного треугольника abc, образованного высотами граней призмы, так как
угол между гранями АА1СС1 и СС1В1В прямой по условию .
Чтобы найти высоту грани АА1СС1 (катет aс треугольника abc),
нужно найти высоты граней, площади которых известны
(найти катет bc и гипотенузу ac прямоугольного треугольника abc)
Из площади грани СС1В1В =50 см² найдем ее высоту (катет cb):
cb=50:5=10 см
Из площади грани АА1В1В=130 см² найдем ее высоту (гипотенузу аb):
аb=130:5=26 см
Высоту ас третьей грани найдем по теореме Пифагора:
aс²=ab²-cb²
ас=√(676-100)=√576=24 см
Площадь третьей грани равна
24*5=120 см²
Sбоковая=120+130+50=300 см²