Найдем с уравнения, чему равна сторона данного квадрата.
Обозначим длину стороны данного квадрата через х.
Согласно условию задачи, длина диагонали данного квадрата равна 2.
Поскольку диагональ и две стороны квадрата образуют прямоугольный треугольник, в котором диагональ квадрата является гипотенузой, а стороны квадрата — катетами, можем, используя теорему Пифагора записать следующее уравнение:
х^2 + х^2 = 2^2.
Решая данное уравнение, получаем:
2х^2 = 4;
х^2 = 4 / 2;
х^2 = 2;
x = √2.
Зная длину стороны данного квадрата, находим его площадь S:
S = (√2)^2 = 2.
ответ: площадь данного квадрата равна 2.
Прикладемо косинець до лінійки однією
стороною кута і проведемо пряму а
вздовж іншої сторони цього кута.
2. Перемістимо косинець уздовж лінійки і
проведемо ще одну пряму в вздовж іншої
сторони того самого кута.
3. Побудовані прямі а і в є паралельними.
Объяснение:
Прикладемо косинець до лінійки однією
стороною кута і проведемо пряму а
вздовж іншої сторони цього кута.
2. Перемістимо косинець уздовж лінійки і
проведемо ще одну пряму в вздовж іншої
сторони того самого кута.
3. Побудовані прямі а і в є паралельними.
Прикладемо косинець до лінійки однією
стороною кута і проведемо пряму а
вздовж іншої сторони цього кута.
2. Перемістимо косинець уздовж лінійки і
проведемо ще одну пряму в вздовж іншої
сторони того самого кута.
3. Побудовані прямі а і в є паралельними.
3. а) Отметьте точки A(1; -4), B(3; -3), C(2, -1)
б) нарисуйте Δ ABC
c) Нарисуйте треугольник ΔA1B1C1 симметричный треугольнику ΔABC,
относительно начала координат.
г) Найдите координаты ΔA1B1C1 . A1 -? B1 - ? C1 -?
д) Как изменился координаты точек, симметричных к началу координат
3)